Influence of Rise on Ultimate Load of Shallow Funicular Concrete Shells over Rectangular Ground Plan Ratio 1:0.6

P. Sachithanantham¹, Dr.S. Sankaran², Dr.S. Elavenil³

Abstract— Shells, stressed skin structures because of their geometryand small flexural rigidity of the skin, tend to carry loads primarily by direct stresses acting in their plane. Concrete shallow funicular shells of rectangular ground plan, double curvature with different rises are loaded to failure with a concentrated central force. Specimens of size 100 cm x 60 cm in plan with edge beam of size 4 cm x 4 cm are prepared with concreteof grade M30 for which the mix design is carried by Indian standard method. The specimens are prepared with various rises and moist cured. They are subjected to ultimate loads and the corresponding strains and deflections are measured. Failure patterns for shells with different rises are observed. From the experimental investigations a relation between span to rise ratio and ultimate load is arrived. It is concluded that the ultimate loads are function of the rise of the shell.

Index Terms- Concrete shell, Funicular shell, Shells, span to rise ratio, Ultimate load

_ _ _ _ _ _ _ _ _ _ _ _

1 INTRODUCTION

CHELLS belong to the class of stressed skin structures Which, because of their geometry and small flexural rigidity of the skin, tend to carry the loads primarily by direct stresses acting in their plane (1). In the design of new forms of concrete shell structures the conventional practice is to select the geometry of shell first and then making the stress analysis. In this process no deliberated effort is taken to ensure the desirable state of stress in the material. Perhaps it is more logical to reverse this process. Ideally a concrete shell in its membrane state carries the external loads by pure compression, unaccompanied by shear stresses so that no tensile stresses develop and hence the reinforcement becomes necessary excepting for secondary effects like bending, shrinkage. In most of the shell roof is the predominant load is the dead weight. Hence it is advantageous to select the shape of shell in such a way that, under this condition of loading, the shell is subjected to pure compression without bending. This can be achieved by shaping the shell in the form of a catenary which the funicular shape is corresponding to the dead weight (2). Shell of rectangular and square ground plans are very frequent occurrence in practice. An attempt is made to study the influence of rise on the ultimate load of the Shallow Funicular Concrete Shells of rectangular Ground Plan ratio of 1:0.6

John W Weber et al., observed that the mathematical investigations of shallow funicular shells with large concentrated loads should be based on large deflection theory and the deflection characteristics of a shell vary closely with its rise parameter (3). Patricia M Belles et al., conclude that the analysis of the stresses and deformations of concrete shell with the anti funicular shape found with the homeostatic model technique (HMT) allows the verification of quasi membrane behaviour (4). Vafai and Farshad studied that the experimental failure loads are found to be directly related to the amount of reinforcement and the age of concrete shells (5). Sachithanantham et al, concluded that the deflection of shallow funicular concrete shells decrease with increase in rise within elastic range and also concluded that the ultimate load carrying capacity increases with increase in rise (6).

2 METHODOLOGY

2.1 Materials

Concrete funicular shell specimens of various rises are prepared with cement, fine aggregate and coarse aggregate for which the design mix proportion is arrived as shown in table 2. To investigate the influence of different rises on the ultimate strength of shallow funicular shells, specimens are prepared and designated as follows.

- i) SFS I Shallow Funicular Shell with rise (r1) 5.2 cm
- ii) SFS II Shallow Funicular Shell with rise (r2) 6.9 cm
- iii) SFS III Shallow Funicular Shell with rise (r3) 9.7 cm

Preliminary tests are carried as per IS standards on the material used for concrete like specific gravity, fineness, consistency, and initial setting time for cement. For fine and coarse aggregates tests such as sieve analysis, specific gravity, impact value, crushing value and abrasion value (Los Angeles and Deval's) are conducted as per standards(7)(8) and the results are tabulated.

2.2 Mix Design

Concrete used for the investigation is designed in accord-

^{1.} P. Sachithanantham is Research Scholar, Department of Civil Engg, Bharath University, Chennai, Tamilnadu, India E-mail: sachu_civil@yahoo.co.in

^{2.} Dr.S. Sankaran is Professor and Dean, Department of Civil Engg, S.K.P.Engineering College, Tiruvannamalai, Tamilnadu, India E-mail: sankaran_bit@yahoo.co.in

^{3.} Dr.S. Elavenil is Professor of Civil Engineering, VIT University, Chennai , Tamilnadu, India E-mail: s_elavenil@yahoo.com

International Journal of Scientific & Engineering Research, Volume 6, Issue 7, July-2015 ISSN 2229-5518

ance with IS 10262 (9).

Cement used	-	PPC – S	53 grade
Specific gravity of Ce	ment	-	3.15
Specific gravity of coa	arse aggreg <i>a</i>	ite -	2.76
Specific gravity of Fir	e aggregate		2.65
Water absorp	otion		
Coa	rse aggregat	e -	0.3%
Fine	aggregate	-	2.9%
Free surface	moisture		
Coa	rse aggregat	e -	Nil
Fine	aggregate	-	2.6%
Sieve analysis			
Coarse aggregate	- Confirms	grading	g of IS 383 -
	1973		
Fine aggregate	- Confirms	zone - Il	[

The design stipulations for M30 grade concrete is given in table 1.

TABLE 1 DESIGN STIPULATIONS FOR M30 GRADE CONCRETE

Design Stipulations	M30
Characteristic Compressive Strength	30 N/mm ²
Maximum size of aggregates	10 mm (angular)
Degree of Workability	0.85 (Compacting Fac- tor)
Type of Exposure	Mild
Degree of Quality Control	Very Good

TABLE 2 DESIGN MIX PROPORTION

Grade	Cement	Fine Ag- gregate	Coarse Ag- gregate	w/c ratio
M30	1	1.327	2.255	0.47

2.3 Preliminary Investigations

The following tests are conducted on cement, fine aggregate and coarse aggregate and the results are tabulated in table 3.

2.4 Casting of Shallow Funciular Pre moulds

Concrete funicular pre moulds of size 100cm x 60cm in ground plan are prepared using cement concrete. A steel frame along with commercially available the polyurethane membrane are used for casting the pre moulds. The membrane is stretched between the boundaries of the rectangular steel frame of ground plan ratio 1: 0.6 and clamped at the boundaries.

Materials	Properties	Values
Cement	Specific Gravity	3.15
	Fineness, %	95.32
	Consistency, %	32
	Initial Setting	38
	time, min	30
Fine Aggregate	Specific Gravity	2.65
	Gradation	Zone II
	Specific Gravity	2.76
Coarse Aggregate	Impact Value, %	26.30
	Crushing Value, %	15
	Los Angeles Abra-	8
	sion Value, %	0

TABLE 3 TEST ON CEMENT, FINE AGGREGATE AND COARSE AGGREGATE

Concrete with very high workability is poured over the membrane due to which the membrane sags downwards and forms a funicular shape. The downward sag is controlled by adjusting the membrane with the clamps provided at the edges and hence the desired rise of the shell is obtained as shown in fig 1. Repeating this procedure funicular pre moulds of three rises r1, r2 and r3 are cast. After the concrete is hardened the pre the concrete moulds are removed from the frame and used for casting the moulds.

Fig.1 Rectangular steel frame with flexible PU membrane for casting the pre mould

2.5 Casting of Shallow Funciular Moulds using Pre moulds

The concrete pre moulds are inverted and kept on a flat surface. The funicular surface profile of the pre mould is lubricated with demoulding agent. Fresh concrete with good workability is poured the over the pre mould in such a way that the convex profile of funicular shape of the pre mould makes the concave profile of funicular shape in the mould. Concrete funicular moulds of size 100cm x 60cm in plan with provision of edge beam of 4cm x 4cm are prepared with adequate reinforcement. Fabrication of mould is in such a way that the moulding of four edge beams is provid-

IJSER © 2015 http://www.ijser.org ed as an integral component of each shell mould. By repeating this process shell moulds of various rises r1,r2 and r3 are prepared as shown in Fig 2.

Fig.2 Moulds of Shallow Funicular Shells

2.6 Casting of Shallow Funciular Shells

Concrete funicular shells of size 100cm x 60cm in plan with edge beam of 4cm x 4cm are prepared using cement concrete of grade M30 with 4mm diameter GI wires at a spacing of 75mm c/c as reinforcement. Rectangular Shell specimens are prepared with shell moulds with various rises of 5.2 cm (r1), 6.9 cm (r2) and 9.7 cm (r3) as shown in Fig 4. Care is taken to maintain the uniform thickness of funicular shell as 25mm with the help of measuring gauge. The shell specimens are moist cured.

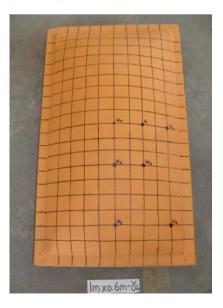
Fig.3 Casting of shell specimen



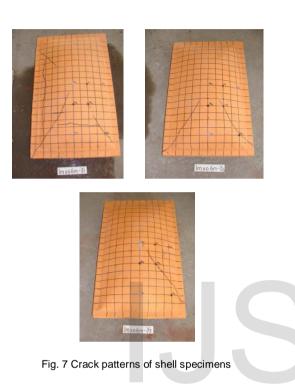
Fig.4 Shell specimens with various rises

3 EXPERIMENTAL SETUP AND TESTING

The self-straining load frame and the Hydraulic loading jack along with Load cell are arranged in such a way to apply the


> IJSER © 2015 http://www.ijser.org

concentrated force over the centre of the shell specimen as shown in Fig. 5. Care is taken to avoid eccentricity during loading. Linear Variable Differential Transformer (LVDT) and electrical resistance strain gauges are mounted where the deflection and strain are required in the specimen. To facilitate the locations of LVDTs and strain gauges the specimens are specially painted and the surface of the shell is discretized with 240 elements of size of 50mm x 50mm. Specimens and the grids are marked as shown in Fig. 6. The rise of the shell specimens cast are measured using Total Station and it is observed that the rises are almost equal to the predetermined values. Shells of SFS I, SFS II and SFS III are placed on loading frame and subjected to central concentrated force and the corresponding deflections are measured within the elastic range using a 20 channel data acquisition system.


Fig. 5 Experimental Setup

After the elastic range all the specimens are subjected to failure and hence the ultimate loads are recorded in the data acquisition system. Visible crakes first appeared at the centre of the shell's outer surface and then propagated towards the corners along the diagonals.

Fig. 6 Discritized Shell specimen

As the load is increased apparent zones of tension near and approximately parallel to the supports are also cracked by which the shell eventually failed. The crack patterns of shell specimens are shown in fig. 7.

4 RESULTS AND DISCUSSIONS

From the experimental investigations of SFS I, SFS II and SFS III a plot is made between the load and the corresponding deflection as shown in fig. 8, 9 and 10 for rise r1, r2 and r3 respectively.

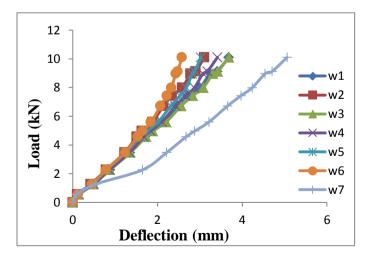


Fig.8 Load vs deflection, r1

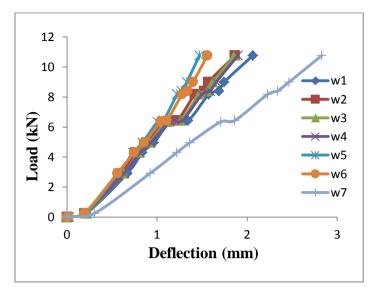
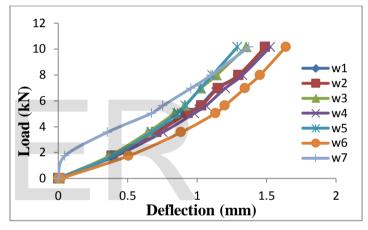
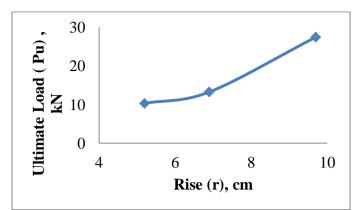


Fig.9 Load vs deflection, r2




Fig.10 Load vs deflection, r3

From the figures 8,9 and 10 it is observed that the deflection of shallow funicular concrete shell decreases with increase in rise. The ultimate loads for the specimens are tabulated in table 4.

TABLE 4 TEST RESULT OF ULTIMATE LOAD (Pu) FOR SHELLS

Туре	Rise, (r)	Span/Rise ratio, (λ)	Ultimate Load, Pu (kN)
SFS I	5.2	11.5	10.33
SFS II	6.9	8.6	13.27
SFS III	9.7	6.1	27.46

A plot is made between ultimate load and the rise of the shell as shown in Fig 11. It is observed that the ultimate load increases with increase in rise. A plot is made between ultimate load and span to rise ratio (λ) as shown in Fig 12.

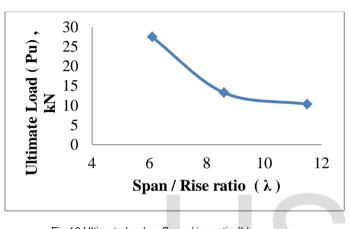


Fig. 11 Ultimate load vs Rise

Fig.12 Ultimate load vs Span /rise ratio (λ)

From Fig 4.5, it is observed that the ultimate load (Pu) increases with the decrease in span to rise ratio (λ). From the fig. 4.5 the relationship between Pu and λ can be approximated by the equation (1) where λ value lies (5 < λ < 20).

 $Pu = 0.863 \lambda^2 - 18.36 \lambda + 107.3 \dots (1)$

5 CONCLUSION

From the experimental investigations the following conclusions are drawn from the test results.

- The deflection of shallow funicular concrete i) shell decreases with increase in rise within the elastic range.
- ii) The ultimate load carrying capacity increases with the increase in rise of shallow funicular concrete shell.
- iii) The Span/Rise ratio decreases the increment in ultimate load carrying capacity.
- It is concluded that an increment of 28 % is obiv) served in Ultimate Load (Pu) in SFS II when compared with SFS I.
- It is concluded that an increment of 105 % is v) observed in Ultimate Load (Pu) in SFS III when compared with SFS II.

It is also concluded that an increment of 165 % is observed in Ultimate Load (Pu) in SFS I when compared with SFS III.

ACKNOWLEDGMENT

The authors would like to acknowledge Bharath University for funding the research reported in this paper. Furthermore the authors acknowledge the technical staff of the structures and advanced concrete laboratory of Department of Civil Engineering for their support in the construction and testing.

REFERENCES

- [1] IS: 2210 1988, "Criteria for Design of reinforced Concrete shell Structures and folded plates", Bureau of Indian Standards, 1989.
- Ramasamy G. S, "Design and Construction of Concrete Shell [2] Roofs", CBS publishers, 1986.
- John W Weber et al, "Ultimate Loads for Shallow Funicular Con-[3] crete Shells", Northwest, Vol. 58, No. 3, 1984, pp 187 - 194.
- Patricia M Belles et al, ' Virtual Simulation of Shape Generation of [4] Homeostatic Shell Models', Association Argentina, Mechanica Computational, Vol 25, Nov, 2006, pp 549 - 560
- Vafai. A and M. Farshad, (1979) "Theoretical and Experimental [5] Study of Prefabricated Funicular Shell Units", Building and Environment, Vol. 14, No. 3, pp. 209-216.
- [6] Sachithanantham.P, Elavenil.S and Sankaran.S, (2011) " Study on Shallow Funicular Concrete Shells over Square Ground Plan Subjected to Ultimate loads", International Journal of Earth Sciences and Engineering, Vol.4, No.06 Spl., Oct 2011, pp 632-637.
- IS: 383-1970, "Coarse and fine aggregate from natural sources for [7] concrete", Indian Standards Institution, 1970.
- IS: 2386 (Part I IV) 1963, "Methods of Test for Aggregates for [8] Concrete", Bureau of Indian Standard, 1963.
- [9] IS: 10262-1982, "Recommended guidelines for concrete mix design", Indian Standards Institution, 1982.
- [10] Farshad.M, and G. Ahmadi, (1979) "Influence of Loading Behavior on the Stability of Cylindrical Shells", J. of Sound and Vibration, Vol. 62, No. 4, pp. 533-540.
- [11] Kai-uwe bletzinger, Linhard J, Wüchner R, Bletzinger KU,(2009)"Isogeometric shell analysis with Kirchhoff-Love elements". Comp. Meth. Appl. Mech. Engng. 198: pp 3902-3914.
- [12] Sachithanantham.P, Sankaran.S, and Elavenil.S (2014) "Study on Shallow Funicular Concrete Shells over Rectangular Ground Plan Ratio 1:0.9", International Journal of Emerging Technology and Advanced Engineering, ISSN 2250-2459 Volume 4, Special Issue 4, June 2014, pp 102-107
- [13] Taira Yamamoto and Frank Vecchio.J., (2001). " Analysis of Reinforced Concrete Shells for Transverse Shear and Torsion "..ACI structural Journal/March- April 2001pp191-199
- [14] IS: 2210 1988, "Criteria for Design of reinforced Concrete shell Structures and folded plates", Bureau of Indian Standards, 1989.
- [15] Bernard Maurin and Rene Motro, (2004). "Concrete shells Form Finding With Surface Stress Density Method.. Journal of structural Engineering ASCE/June2004pp961-968
- [16] IS: 2204 1962, "code of practice for construction of reinforced concrete shell roof", Bureau of Indian Standards, 1962.